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Let H be an open upper half-space in Rn, n ≥ 2, and assume that A is a non-empty, open,
bounded subset of Rn such that A ⊂ H and the exterior of A is connected. Let p ∈ [2,+∞).
It is proved that there is a nonzero function with zero integrals over all sets in Rn congruent
to A if and only if the indicator function of A is the limit in Lp(H) of a sequence of linear
combinations of indicator functions of balls in H with radii proportional to positive zeros of the
Bessel function Jn/2. The proportionality coefficient here is the same for all balls and depends
only on A.

О. А. Очаковская. Описание множеств Помпейю в терминах аппроксимации их инди-
каторов // Мат. Студiї. – 2013. – Т.39, №2. – C.142–149.

Пусть H — открытое верхнее полупространство в Rn, n ≥ 2 и пусть A — непустое,
открытое, ограниченное подмножество Rn такое, что A ⊂ H и внешность A связна. Пусть
p ∈ [2,+∞). Показано, что для существования ненулевой функции с нулевыми интегра-
лами по всем множествам из Rn, конгруэнтным A, необходимо и достаточно, чтобы инди-
катор A был пределом в Lp(H) последовательности линейных комбинаций индикаторов
шаров, лежащих в H, с радиусами, пропорциональными положительным нулям функции
Бесселя Jn/2. При этом коэффициент пропорциональности один и тот же для всех шаров
и зависит только от A.

1. Introduction and the central result. Let Rn be a real Euclidean space of dimension
n ≥ 2 and let M(n) be the group of its rigid motions.

A non-empty open bounded subset A of Rn is called a Pompeiu set if for function f ∈
Lloc(Rn) the equality ∫

gA

f(x)dx = 0 (1)

holding for all g ∈ M(n) yields f = 0. In this case, one says also that A has the Pompeiu
property.

Next, one says that A fails to have the weak Pompeiu property if there is a nonzero
solution f of equality (1) such that∫

Rn

|f(x)|(1 + |x|)−αdx < +∞ (2)
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for some α > 0 depending on f .
In the sequel we write χA for the indicator function of A. Also let Ext(A) be the exterior

of A (i.e., Ext(A) = Rn \ A where A is the closure of A). For λ > 0, let Nλ = {r > 0:
Jn/2(rλ) = 0} where Jk is the kth-order Bessel function of the first kind.

The classical Pompeiu problem about functions satisfying (1) has been studied by many
authors (see survey papers [1], [2], that contain an extensive bibliography; see also [3], [4])

The following description of sets with the weak Pompeiu property has been obtained by
V. V. Volchkov, see [5].

Theorem 1. Let A be a non-empty open bounded subset of Rn. Then the following condi-
tions are equivalent.

(i) A fails to have the weak Pompeiu property.
(ii) There exists λ = λ(A) > 0 such that the function χA is the limit of a sequence of linear

combinations of the indicator functions of balls of radii r ∈ Nλ convergent in L1(Rn).

We note that a similar result for the Pompeiu property holds under the assumption that
the set Ext(A) is connected (see [6]).

It is known that Theorem 1 is no longer valid for the space Lp(Rn), p ≥ 2n/(n + 1)
instead of L1(Rn) (see [3, Part 2, Theorem 1.13]). The case 1 < p < 2n/(n+ 1) is still open.

In this paper, we obtain an analog of Theorem 1 in terms of approximation of χA in the
space Lp(H) where 2 ≤ p < +∞ and H = {x = (x1, . . . , xn) ∈ Rn : xn > 0}. Our main result
is as follows.

Theorem 2. Let A be a non-empty open bounded subset of Rn such that A ⊂ H and the
set Ext(A) is connected. Let p ∈ [2,+∞). Then the following conditions are equivalent.

(i) A does not have the Pompeiu property.
(ii) There exists λ = λ(A) > 0 such that the function χA is the limit of a sequence of

linear combinations of the indicator functions of balls in H of radii r ∈ Nλ convergent
in Lp(H).

Together with [5], the proof of Theorem 2 shows (see Section 3 below) that the same result
for the weak Pompeiu property remains valid. Moreover, in this situation the assumption
that Ext(A) is connected can be removed.

2. Notation and auxiliary statements. Let r > 0 and let Br = {x ∈ Rn : |x| < r} where
|·| is the Euclidean norm. Denote by En/2 = {ν1, ν2, . . . } the increasing sequence of all zeros
of the function Jn/2 lying on (0,+∞).

As usual, f̂ is the Fourier transform of the function f and f1 ∗f2 is the convolution of the
functions f1, f2 (when they are well defined), suppf is the support of f , and D(Rn) is the
set of functions in the class C∞(Rn) with compact support. Let ∆ be the Laplace operator.

For x = (x1, . . . , xn) ∈ Rn we set x′ = (x1, . . . , xn−1) ∈ Rn−1, |x′| =
√
x21 + · · ·+ x2n−1.

Also let (·, ·) be the inner product in Rn−1 and assume that dx′ = dx1 · · · dxn−1 is the
Lebesgue measure in Rn−1.

For µ > 0 we set

ϕ(t) = ϕ(t, r, µ) =

{
(r2 − t2)n−1

4 Jn−1
2

(µ
√
r2 − t2), |t| < r;

0, |t| ≥ r.

Also let ϕk,µ(t) = ϕ(t, νk, µ), k ∈ N.
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Lemma 1. The following assertions are true.

(i) For z ∈ C,
ϕ̂(z) =

√
2πrn/2µ

n−1
2 Jn

2
(r
√
µ2 + z2)(µ2 + z2)−

n
4 . (3)

(ii) All the zeros of ϕ̂k,µ in C \ {0} are simple.
(iii) If ζ ∈ C and µ > 0 are fixed and ϕ̂k,µ(ζ) = 0 for all k ∈ N then ζ2 + µ2 = 1.

Proof. Assertions (i) and (ii) were obtained by the author in [7]. Let us prove (iii). First we
recall the fact that all the zeros of Jn/2 are real (see [8, Chapter 23]). Using now (3) we see
that for each k ∈ N there exists m = mk ∈ N such that ζ2 = ν2m/ν

2
k − µ2. This means that

the value νm/νk is independent of k. Taking [5, Lemma 3] into account we conclude that
νm/νk = 1, which yields the required result.

Lemma 2. Let k ∈ N and µ > 0 be fixed and assume that Jn
2
(µνk) 6= 0. Also let g be

a function in the class Cn[−νk, νk] satisfying the following conditions:

1) g(s)(νk) = 0 for all s ∈ {0, . . . , n};
2)
∫ νk
−νk

g(s)(α)ϕk,µ(α) dα = 0 for all s ∈ {0, . . . , n};

3)
∫ νk
−νk

g(ξ)
∫ ξ
−νk

ϕk,µ(t)eiτ(ξ−t) dt dξ = 0 for all τ ∈ C such that ϕ̂k,µ(τ) = 0.

Then g = 0.

Proof. We can rewrite condition 3) as follows∫ 2νk

0

eiτα
∫ νk−α

−νk
g(α + β)ϕk,µ(β) dβ dα = 0. (4)

Consider the entire function

w(z) = e−νkz
∫ 2νk

0

eizα
∫ νk−α

−νk
g(α + β)ϕk,µ(β) dβ dα, z ∈ C. (5)

Integrating (5) by parts and using conditions 1) and 2) we obtain |w(z)| ≤ C1(1+|z|)−neνk|∈z|,
with positive constant C1 independent of z. It now follows from (4), (5) and Lemma 1(ii)
that the function

w1(z) = w(z)/ϕ̂k,µ(z) (6)

is entire. Using the asymptotic formula for Jn
2
(z) as z →∞ (see [8, Chapter 29]) we deduce

from (6) and (3) the inequality |w1(t ± it)| ≤ C2(1 + |t|) 1−n
2 , t ∈ R1, with positive C2

independent of t. Hence it follows from the Phragmén-Lindelöf principle and Liouwille’s
theorem that w1 = 0. According to (5) this means that

∫ νk−α
−νk

g(α + β)ϕk,µ(β) dβ dα = 0

for all α ∈ (0, 2νk). Then we have the result of our lemma from Titchmarsh’s theorem on
convolution (see [9, Appendix VII, Chapter 12]).

Lemma 3. Let R > r > 0, T ∈ L(R1), assume that suppT ⊂ [−r, r] and let

f(t) =
M∑
m=0

L∑
l=1

am,lt
m exp(iblt), t ∈ (−R,R),

where M ∈ Z+, L ∈ N, am,l ∈ C, and bl ∈ C are pairwise different complex numbers.
Assume also that f ∗T = 0 and T̂ (η)(bk) 6= 0 for some η ∈ {0, . . . ,M}, k ∈ {1, . . . , L}. Then
am,k = 0 for all m ≥ η.
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Proof. Simple calculations show that the condition f ∗ T = 0 is equivalent to

M∑
m=ν

am,l(−i)m
(
m

ν

)
T̂ (m−ν)(bl) = 0, ν ∈ {0, . . . ,M}, l ∈ {1, . . . , L},

where
(
m
ν

)
are the binomial coefficients. The required result is now obvious.

Lemma 4. Let Mr = {x = (x′, xn) ∈ Rn : |xn| ≤ r}, assume that u ∈ Lp(Mr) for some
p ∈ [1, 2], and let

v(t) =

∫
Br

u(x′ + t, xn)dx, t ∈ Rn−1. (7)

Then v ∈ Lp(Rn−1) and

v̂(λ) =

(
2π

|λ|

)(n−1)/2 ∫ r

−r
û(λ, xn)ϕ(xn, r, |λ|)dxn (8)

for almost all λ ∈ Rn−1, where û is the Fourier transform of u(x′, xn) with respect to x′.

Proof. Since u ∈ Lp(Mr) we see from (7) and Hölder’s inequality that v ∈ Lp(Rn−1). Let us
prove (8). We claim that

v̂(λ) =

∫
Br

ei(λ,x
′)û(λ, xn)dx. (9)

It is enough to consider the cases p = 1 and p = 2 (see [10, Chapter 1, Section 2]). In
the case p = 1 relation (9) follows from the definition of the Fourier transform and Fubini’s
theorem. Suppose now that p = 2. For R > 0 we set

vR(t) =

∫
Br

uR(x′ + t, xn)dx, t ∈ Rn−1,

where uR(x′, xn) = u(x′, xn) for |x′| ≤ R, and uR(x′, xn) = 0 otherwise. Letting R → +∞
one sees that uR → u in L2(Mr) and hence vR → v in L2(Rn−1). In addition,

v̂R(λ) =

∫
Br

ei(λ,x
′)ûR(λ, xn)dx

for almost all λ ∈ Rn−1. Passing here to the limit as R → ∞ in the space D′(Rn−1) of the
distributions on Rn−1 we arrive at (9). Next, passing to repeated integration in (9) one infers
that

v̂(λ) =

(
2π

|λ|

)(n−1)/2 ∫ r

−r
û(λ, xn)

∫
ei(λ,x

′) dx′ dxn,

where the inner integral is taken over the ball {x′ ∈ Rn−1 : x21 + · · ·+ x2n−1 ≤ r2− x2n}. Using
the formula for the Fourier transform of the indicator of a ball (see [10, Chapter 4, Theorem
4.15]) we obtain the required result.

Lemma 5. Let f ∈ Lp(H) for some p ∈ [1, 2] and suppose that
∫
Br
f(x + y)dx = 0 for all

r ∈ En/2 and all y ∈ {x ∈ Rn : xn > r}. Then there exists u ∈ C∞(H) such that 4u+ u = 0
and f = u in H almost everywhere.
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Proof. Let ϕ be an arbitrary function in the class C∞(Rn) with support inside the ball B1.
We set

F (x) =

∫
H

f(y)ϕ(x+ y) dy, x ∈ H1 = {x ∈ R1, xn > 1}. (10)

Let r ∈ En
2
. In view of (10), one has∫

Br(0)

F (x1 + t1, . . . , xn−1 + tn−1, xn + y) dx = 0 (11)

for all t ∈ (t1, . . . , tn−1) ∈ Rn−1 and y > r + 1. Assume that µ ≥ 0 and λ ∈ Rn−1 are related
by µ = |λ|. For brevity we shall write gλ(xn) for the Fourier transform of F (x′, xn) with
respect to x′. Using Lemma 4 we see from (11) that∫ νk

−νk
gλ(xn + y)ϕk,µ(xn) dxn = 0, (12)

for all k ∈ N, y > νk + 1 and almost all λ ∈ Rn−1. Now define gλ,k(u) = gλ(u+ νk + 2), u >
νk − 1. Thus gλ,k ∈ C∞(−νk − 1,+∞) and∫ νk

−νk
gλ,k(ξ + η)ϕk,µ(ξ) dξ = 0, η > −1, (13)

for each k ∈ N (see (10)).
Assume that η > −1, z ∈ C, and let

Wk,µ(η, z) =

∫ νk

−νk
gλ,k(η + ξ)

∫ ξ

−νk
ϕk,µ(t)eiz(ξ−t) dt dξ. (14)

Then one has
∂Wk,µ

∂η
=

∫ νk

−νk
g′λ,k(η + ξ)

∫ ξ

−νk
ϕk,µ(t)eiz(ξ−t) dt dξ.

Integrating by parts we find that

∂Wk,µ

∂η
= ϕ̂k,µ(z)eiνkzgλ,k(η + νk)−

∫ νk

−νk
gλ,k(η + ξ)ϕk,µ(ξ) dξ−

−iz
∫ νk

−νk
gλ,k(η + ξ)

∫ ξ

−νk
ϕk,µ(t)eiz(ξ−t) dt dξ.

This together with (13) yields

∂Wk,µ

∂η
= −izWk,µ + ϕ̂k,µ(z)eiνkzgλ,k(η + νk). (15)

Let Nk,µ = {z ∈ C : ϕ̂k,µ(z) = 0} and assume that τ ∈ Nk,µ. Equality (15) shows that the
value Wk,µ(η, τ)eizη is independent of η. Because of (14) this means that∫ νk

−νk
gλ,k(η + ξ)

∫ ξ

−νk
ϕk,µ(t)eiτ(ξ−t) dt dξ = Ck,µ(τ)e−iτη, η > −1, (16)
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where the constant Ck,µ(τ) is independent of η. Next, let s ∈ N and h > νs. It follows from
(16) and (13) that

Ck,µ(τ)

∫ νs+h

−νs+h
e−iτηϕs,µ(η − h) dη = 0,

whence Ck,µ(τ)e−iτhϕ̂s,µ(τ) = 0. This together with (16) implies that if for some k ∈ N and
τ ∈ Nk,µ there exists s ∈ N such that ϕ̂s,µ(τ) is nonzero, then∫ νk

−νk
gλ,k(η + ξ)

∫ νk

−νk
ϕk,µ(t)eiτ(ξ−t) dt dξ = 0, η > −1. (17)

Assertion (iii) of Lemma 1 shows that (17) holds for each τ ∈ Nk,µ such that τ 2 + µ2 6= 1. If
the last condition is valid then one has∫ νk

−νk
Φλ,k(η + ξ)

∫ ξ

−νk
ϕk,µ(t)eiτ(ξ−t) dt dξ = 0, η > −1, (18)

where
Φλ,k(t) = g′′λ,k(t) + (1− µ2)gλ,k(t), t > −νk − 1. (19)

For the case where τ 2 +µ2 = 1 relation (18) remains valid because of (16). By differentiating
(18) with respect to η and by setting η = 0 we infer that∫ νk

−νk
Φ

(m)
λ,k (ξ)

∫ ξ

−νk
ϕk,µ(t)eiτ(ξ−t) dt dξ = 0, (20)

for all τ ∈ Nk,µ and m ∈ Z+. We now put g(u) =
∑2n+3

j=1 αj,kΦ
(j)
λ,k(u), where the constants

αj,k ∈ C are selected so that
∑2n+3

j=1 |αj,k| 6= 0 and the function g satisfies assumptions 1)
and 2) of Lemma 2. This is possible since 2n+3 is grater than the total number of equations
in assumptions 1) and 2) of Lemma 2. Choosing λ so that Jn

2
(|λ|νk) 6= 0 for each k ∈ N,

we conclude from (20) and Lemma 2 that g = 0 on [−νk, νk]. Using now (21) and (19), one
sees from (17) and Titchmarsh’s theorem on convolution (see [9, Appendix VII, Chapter 12])
that g = 0 on (−νk,+∞). By the definition of gλ and (19) it follows that gλ is a solution
of some linear differential equation with nonzero constant coefficients depending on λ. This
means that gλ has the form

gλ(t) =
M∑
m=0

L∑
l=1

aλ,m,lt
m exp(iblt), t > 1,

where the constants aλ,m,l ∈ C, νl ∈ C, M ∈ Z+, L ∈ N depend, in general, on λ. In
the sequel, without loss of generality, we assume that the numbers bl are pairwise distinct.
Bearing (12) in mind one concludes from Lemma 3 that

gλ(xn) = C1(λ)e−i
√

1−|λ|2xn + C2(λ)ei
√

1−|λ|2xn , (21)

where C1(λ) and C2(λ) are complex constants depending on λ. Next, let y > r > 0 and
t ∈ Rn−1. Applying (21), by Lemmas 4 and 1(i) we obtain∫

Br

F (x′ + t, xn + y)dx = (2πr)(n/2)Jn/2(r)F (t, y).
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By the theorem on ball means for solutions of Helmholtz’s equation (see[5]) this means that
∆F + F = 0 in H1. Since the function ϕ above was arbitrary, one deduces from (10) that
∆f+f = 0 in H in the distribution sense. This equality and the ellipticity of the operator ∆
ensure us that f almost everywhere equal to a function u ∈ C∞(H) such that 4u + u = 0.
Hence the lemma is proved.

3. Proof of the main result. We now proceed to the proof of Theorem 2.
(i)→ (ii). It follows from the assumptions and ([3, Part 4, Theorem 1.2]) that there exists
λ = λ(A) > 0 such that the equation

∆u+ λ2u = χA (22)

has a solution u ∈ C1(Rn) with compact support (here equality (22) is understood in the
sense of distributions). We select a non-trivial function φ ∈ D(Rn) such that supp v ⊂ H
where v = χA ∗ φ. Setting w = u ∗ φ one sees from (22) that

∆w + λ2w = v. (23)

We claim that each continuous linear functional Ψ on Lp(H) annihilating the indicator
functions of all balls in H of radii r ∈ Nλ also annihilates v. By Riesz’s theorem and
Lemma 5 such a functional has the following form

Ψ(g) =

∫
H

g(x)f(x)dx, g ∈ Lp(H), (24)

where f ∈ Lq(H), q = p/(p− 1), and

∆f + λ2f = 0 in H. (25)

The last equality and the ellipticity of the operator ∆ mean that f is almost everywhere
equal to a real analytic function on H. Using (23), (24), and (25), we have Ψ(v) =

∫
H
w(x)

(∆f + λ2f)(x)dx = 0 proving the claiming. Thus the convolution χA ∗ φ is the limit of
a sequence of linear combinations of the indicator functions of balls in H of radii r ∈ Nλ

convergent in Lp(H). Now, from the arbitrariness of φ and ([10, Chapter 1, Theorem 1.18])
we obtain the required result.
(ii)→ (i). For λ = λ(A) we consider a non-trivial non-negative function ϕ ∈ D(R1) with
support on [a, b] ⊂ (λ/2,+∞). Now define

f(x) =

∫ b

a

J(n−3)/2(
√
t2 + λ2|x′|)

(
√
t2 + λ2|x′|)(n−3)/2

e−txnϕ(t)dt, x ∈ Rn. (26)

Repeating the argument in the proof of Theorem 2 in [7] we see that f ∈ (C∞ ∩ Lq)(H) for
each q ≥ 1. In addition f(x) > 0 for x = (0, . . . , 0, xn) and relation (25) is satisfied. Using
the mean theorem for Helmholtz’s equation we conclude that

∫
B
f(x)dx = 0 for each ball

B ⊂ H with radius r ∈ Nλ. Hence by the assumption in (ii) and the Hölder inequality one
obtains

∫
A+h

f(x)dx = 0 for each h ∈ H. Take h = h1 + h2 where h1, h2 ∈ H. It follows
from (26) and the arbitrariness of h2 and ϕ that∫

A+h1

J(n−3)/2(
√
t2 + λ2|x′|)

(
√
t2 + λ2|x′|)(n−3)/2

e−txndx = 0 (27)
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for each t > λ/2. For the case where n = 2 this yields
∫
A+h1

cos(
√
t2 + λ2x1)e

−tx2dx1dx2 = 0
(see [8, formula (7.3)]). Since h1 ∈ H could be arbitrary the last relation shows that∫

A

exp(−tx2 + i
√
t2 + λ2x1)dx1dx2 = 0. (28)

Assume now that n > 2. It follows from (27) and [3, Part 1, formula (5.29)] that∫
Sn−2

∫
A+h1

exp

(
−txn + i

√
t2 + λ2

n−1∑
j=1

xjσj

)
dxdω(σ) = 0,

where dω is area measure on Sn−2. As before, this yields∫
A

exp

(
−txn + i

√
t2 + λ2

n−1∑
j=1

xjσj

)
dx = 0 (29)

for all σ = (σ1, . . . , σn−1) ∈ Sn−2. Since the left-hand parts in (28) and (29) are holomorphic
functions of variable t in the disk {t ∈ C : |t| < λ} one sees from (28) and (29) that∫
A

exp(i
∑n

j=1 ζjxj)dx = 0 for all (ζ1, . . . , ζn) ∈ Rn such that |ζ| = λ. Thus A fails to
have the weak Pompeiu property (see, for instance, [5]). Hence A is not a Pompeiu set and
the proof of Theorem 2 is complete.
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