УДК 517.444

O. A. Ochakovskaya

DESCRIPTION OF POMPEIU SETS IN TERMS OF APPROXIMATIONS OF THEIR INDICATOR FUNCTIONS

O. A. Ochakovskaya. Description of Pompeiu sets in terms of approximations of their indicator functions, Mat. Stud. **39** (2013), 142–149.

Let H be an open upper half-space in \mathbb{R}^n , $n \geq 2$, and assume that A is a non-empty, open, bounded subset of \mathbb{R}^n such that $\overline{A} \subset H$ and the exterior of A is connected. Let $p \in [2, +\infty)$. It is proved that there is a nonzero function with zero integrals over all sets in \mathbb{R}^n congruent to A if and only if the indicator function of A is the limit in $L^p(H)$ of a sequence of linear combinations of indicator functions of balls in H with radii proportional to positive zeros of the Bessel function $J_{n/2}$. The proportionality coefficient here is the same for all balls and depends only on A.

О. А. Очаковская. Описание множеств Помпейю в терминах аппроксимации их индикаторов // Мат. Студії. – 2013. – Т.39, №2. – С.142–149.

Пусть H — открытое верхнее полупространство в \mathbb{R}^n , $n \ge 2$ и пусть A — непустое, открытое, ограниченное подмножество \mathbb{R}^n такое, что $\overline{A} \subset H$ и внешность A связна. Пусть $p \in [2, +\infty)$. Показано, что для существования ненулевой функции с нулевыми интегралами по всем множествам из \mathbb{R}^n , конгруэнтным A, необходимо и достаточно, чтобы индикатор A был пределом в $L^p(H)$ последовательности линейных комбинаций индикаторов шаров, лежащих в H, с радиусами, пропорциональными положительным нулям функции Бесселя $J_{n/2}$. При этом коэффициент пропорциональности один и тот же для всех шаров и зависит только от A.

1. Introduction and the central result. Let \mathbb{R}^n be a real Euclidean space of dimension $n \geq 2$ and let M(n) be the group of its rigid motions.

A non-empty open bounded subset A of \mathbb{R}^n is called a *Pompeiu set* if for function $f \in L_{loc}(\mathbb{R}^n)$ the equality

$$\int_{gA} f(x)dx = 0 \tag{1}$$

holding for all $g \in M(n)$ yields f = 0. In this case, one says also that A has the *Pompeiu* property.

Next, one says that A fails to have the weak Pompeiu property if there is a nonzero solution f of equality (1) such that

$$\int_{\mathbb{R}^n} |f(x)| (1+|x|)^{-\alpha} dx < +\infty$$
(2)

²⁰¹⁰ Mathematics Subject Classification: 33C80, 44A35, 53C35. Keywords: Pompeiu property; mean periodicity.

for some $\alpha > 0$ depending on f.

In the sequel we write χ_A for the indicator function of A. Also let Ext(A) be the exterior of A (i.e., $\text{Ext}(A) = \mathbb{R}^n \setminus \overline{A}$ where \overline{A} is the closure of A). For $\lambda > 0$, let $N_{\lambda} = \{r > 0: J_{n/2}(r\lambda) = 0\}$ where J_k is the kth-order Bessel function of the first kind.

The classical Pompeiu problem about functions satisfying (1) has been studied by many authors (see survey papers [1], [2], that contain an extensive bibliography; see also [3], [4])

The following description of sets with the weak Pompeiu property has been obtained by V. V. Volchkov, see [5].

Theorem 1. Let A be a non-empty open bounded subset of \mathbb{R}^n . Then the following conditions are equivalent.

- (i) A fails to have the weak Pompeiu property.
- (ii) There exists $\lambda = \lambda(A) > 0$ such that the function χ_A is the limit of a sequence of linear combinations of the indicator functions of balls of radii $r \in N_\lambda$ convergent in $L^1(\mathbb{R}^n)$.

We note that a similar result for the Pompeiu property holds under the assumption that the set Ext(A) is connected (see [6]).

It is known that Theorem 1 is no longer valid for the space $L^p(\mathbb{R}^n)$, $p \ge 2n/(n+1)$ instead of $L^1(\mathbb{R}^n)$ (see [3, Part 2, Theorem 1.13]). The case 1 is still open.

In this paper, we obtain an analog of Theorem 1 in terms of approximation of χ_A in the space $L^p(H)$ where $2 \leq p < +\infty$ and $H = \{x = (x_1, \ldots, x_n) \in \mathbb{R}^n : x_n > 0\}$. Our main result is as follows.

Theorem 2. Let A be a non-empty open bounded subset of \mathbb{R}^n such that $A \subset H$ and the set Ext(A) is connected. Let $p \in [2, +\infty)$. Then the following conditions are equivalent.

- (i) A does not have the Pompeiu property.
- (ii) There exists $\lambda = \lambda(A) > 0$ such that the function χ_A is the limit of a sequence of linear combinations of the indicator functions of balls in H of radii $r \in N_{\lambda}$ convergent in $L^p(H)$.

Together with [5], the proof of Theorem 2 shows (see Section 3 below) that the same result for the weak Pompeiu property remains valid. Moreover, in this situation the assumption that Ext(A) is connected can be removed.

2. Notation and auxiliary statements. Let r > 0 and let $B_r = \{x \in \mathbb{R}^n : |x| < r\}$ where $|\cdot|$ is the Euclidean norm. Denote by $E_{n/2} = \{\nu_1, \nu_2, \dots\}$ the increasing sequence of all zeros of the function $J_{n/2}$ lying on $(0, +\infty)$.

As usual, \widehat{f} is the Fourier transform of the function f and $f_1 * f_2$ is the convolution of the functions f_1, f_2 (when they are well defined), supp f is the support of f, and $\mathcal{D}(\mathbb{R}^n)$ is the set of functions in the class $C^{\infty}(\mathbb{R}^n)$ with compact support. Let Δ be the Laplace operator.

For $x = (x_1, \ldots, x_n) \in \mathbb{R}^n$ we set $x' = (x_1, \ldots, x_{n-1}) \in \mathbb{R}^{n-1}, |x'| = \sqrt{x_1^2 + \cdots + x_{n-1}^2}$. Also let (\cdot, \cdot) be the inner product in \mathbb{R}^{n-1} and assume that $dx' = dx_1 \cdots dx_{n-1}$ is the Lebesgue measure in \mathbb{R}^{n-1} .

For $\mu > 0$ we set

$$\varphi(t) = \varphi(t, r, \mu) = \begin{cases} (r^2 - t^2)^{\frac{n-1}{4}} J_{\frac{n-1}{2}}(\mu \sqrt{r^2 - t^2}), & |t| < r; \\ 0, & |t| \ge r. \end{cases}$$

Also let $\varphi_{k,\mu}(t) = \varphi(t,\nu_k,\mu), \ k \in \mathbb{N}.$

Lemma 1. The following assertions are true.

(i) For $z \in \mathbb{C}$,

$$\widehat{\varphi}(z) = \sqrt{2\pi} r^{n/2} \mu^{\frac{n-1}{2}} J_{\frac{n}{2}}(r\sqrt{\mu^2 + z^2}) (\mu^2 + z^2)^{-\frac{n}{4}}.$$
(3)

- (*ii*) All the zeros of $\widehat{\varphi}_{k,\mu}$ in $\mathbb{C} \setminus \{0\}$ are simple.
- (iii) If $\zeta \in \mathbb{C}$ and $\mu > 0$ are fixed and $\widehat{\varphi}_{k,\mu}(\zeta) = 0$ for all $k \in \mathbb{N}$ then $\zeta^2 + \mu^2 = 1$.

Proof. Assertions (i) and (ii) were obtained by the author in [7]. Let us prove (iii). First we recall the fact that all the zeros of $J_{n/2}$ are real (see [8, Chapter 23]). Using now (3) we see that for each $k \in \mathbb{N}$ there exists $m = m_k \in \mathbb{N}$ such that $\zeta^2 = \nu_m^2/\nu_k^2 - \mu^2$. This means that the value ν_m/ν_k is independent of k. Taking [5, Lemma 3] into account we conclude that $\nu_m/\nu_k = 1$, which yields the required result.

Lemma 2. Let $k \in \mathbb{N}$ and $\mu > 0$ be fixed and assume that $J_{\frac{n}{2}}(\mu\nu_k) \neq 0$. Also let g be a function in the class $C^n[-\nu_k,\nu_k]$ satisfying the following conditions:

- 1) $g^{(s)}(\nu_k) = 0$ for all $s \in \{0, ..., n\};$ 2) $\int_{-\nu_k}^{\nu_k} g^{(s)}(\alpha) \varphi_{k,\mu}(\alpha) \, d\alpha = 0$ for all $s \in \{0, ..., n\};$
- 3) $\int_{-\nu_k}^{\nu_k} g(\xi) \int_{-\nu_k}^{\xi} \varphi_{k,\mu}(t) e^{i\tau(\xi-t)} dt d\xi = 0$ for all $\tau \in \mathbb{C}$ such that $\widehat{\varphi}_{k,\mu}(\tau) = 0$. Then g = 0.

Proof. We can rewrite condition 3) as follows

$$\int_{0}^{2\nu_{k}} e^{i\tau\alpha} \int_{-\nu_{k}}^{\nu_{k}-\alpha} g(\alpha+\beta)\varphi_{k,\mu}(\beta) \,d\beta \,d\alpha = 0.$$
(4)

Consider the entire function

$$w(z) = e^{-\nu_k z} \int_0^{2\nu_k} e^{iz\alpha} \int_{-\nu_k}^{\nu_k - \alpha} g(\alpha + \beta) \varphi_{k,\mu}(\beta) \, d\beta \, d\alpha, \quad z \in \mathbb{C}.$$
 (5)

Integrating (5) by parts and using conditions 1) and 2) we obtain $|w(z)| \leq C_1(1+|z|)^{-n}e^{\nu_k|\in z|}$, with positive constant C_1 independent of z. It now follows from (4), (5) and Lemma 1(ii) that the function

$$w_1(z) = w(z)/\widehat{\varphi}_{k,\mu}(z) \tag{6}$$

is entire. Using the asymptotic formula for $J_{\frac{n}{2}}(z)$ as $z \to \infty$ (see [8, Chapter 29]) we deduce from (6) and (3) the inequality $|w_1(t \pm it)| \leq C_2(1 + |t|)^{\frac{1-n}{2}}$, $t \in \mathbb{R}^1$, with positive C_2 independent of t. Hence it follows from the Phragmén-Lindelöf principle and Liouwille's theorem that $w_1 = 0$. According to (5) this means that $\int_{-\nu_k}^{\nu_k - \alpha} g(\alpha + \beta) \varphi_{k,\mu}(\beta) d\beta d\alpha = 0$ for all $\alpha \in (0, 2\nu_k)$. Then we have the result of our lemma from Titchmarsh's theorem on convolution (see [9, Appendix VII, Chapter 12]).

Lemma 3. Let R > r > 0, $T \in L(\mathbb{R}^1)$, assume that supp $T \subset [-r, r]$ and let

$$f(t) = \sum_{m=0}^{M} \sum_{l=1}^{L} a_{m,l} t^{m} \exp(ib_{l}t), \quad t \in (-R, R),$$

where $M \in \mathbb{Z}_+$, $L \in \mathbb{N}$, $a_{m,l} \in \mathbb{C}$, and $b_l \in \mathbb{C}$ are pairwise different complex numbers. Assume also that f * T = 0 and $\widehat{T}^{(\eta)}(b_k) \neq 0$ for some $\eta \in \{0, \ldots, M\}$, $k \in \{1, \ldots, L\}$. Then $a_{m,k} = 0$ for all $m \geq \eta$. *Proof.* Simple calculations show that the condition f * T = 0 is equivalent to

$$\sum_{m=\nu}^{M} a_{m,l}(-i)^m \binom{m}{\nu} \widehat{T}^{(m-\nu)}(b_l) = 0, \quad \nu \in \{0, \dots, M\}, \ l \in \{1, \dots, L\},$$

where $\binom{m}{\nu}$ are the binomial coefficients. The required result is now obvious.

Lemma 4. Let $M_r = \{x = (x', x_n) \in \mathbb{R}^n : |x_n| \leq r\}$, assume that $u \in L^p(M_r)$ for some $p \in [1, 2]$, and let

$$v(t) = \int_{B_r} u(x'+t, x_n) dx, \ t \in \mathbb{R}^{n-1}.$$
 (7)

Then $v \in L^p(\mathbb{R}^{n-1})$ and

$$\widehat{v}(\lambda) = \left(\frac{2\pi}{|\lambda|}\right)^{(n-1)/2} \int_{-r}^{r} \widehat{u}(\lambda, x_n) \varphi(x_n, r, |\lambda|) dx_n \tag{8}$$

for almost all $\lambda \in \mathbb{R}^{n-1}$, where \hat{u} is the Fourier transform of $u(x', x_n)$ with respect to x'.

Proof. Since $u \in L^p(M_r)$ we see from (7) and Hölder's inequality that $v \in L^p(\mathbb{R}^{n-1})$. Let us prove (8). We claim that

$$\widehat{v}(\lambda) = \int_{B_r} e^{i(\lambda, x')} \widehat{u}(\lambda, x_n) dx.$$
(9)

It is enough to consider the cases p = 1 and p = 2 (see [10, Chapter 1, Section 2]). In the case p = 1 relation (9) follows from the definition of the Fourier transform and Fubini's theorem. Suppose now that p = 2. For R > 0 we set

$$v_R(t) = \int_{B_r} u_R(x'+t, x_n) dx, \ t \in \mathbb{R}^{n-1},$$

where $u_R(x', x_n) = u(x', x_n)$ for $|x'| \leq R$, and $u_R(x', x_n) = 0$ otherwise. Letting $R \to +\infty$ one sees that $u_R \to u$ in $L^2(M_r)$ and hence $v_R \to v$ in $L^2(\mathbb{R}^{n-1})$. In addition,

$$\widehat{v_R}(\lambda) = \int_{B_r} e^{i(\lambda, x')} \widehat{u_R}(\lambda, x_n) dx$$

for almost all $\lambda \in \mathbb{R}^{n-1}$. Passing here to the limit as $R \to \infty$ in the space $\mathcal{D}'(\mathbb{R}^{n-1})$ of the distributions on \mathbb{R}^{n-1} we arrive at (9). Next, passing to repeated integration in (9) one infers that

$$\widehat{v}(\lambda) = \left(\frac{2\pi}{|\lambda|}\right)^{(n-1)/2} \int_{-r}^{r} \widehat{u}(\lambda, x_n) \int e^{i(\lambda, x')} \, dx' \, dx_n$$

where the inner integral is taken over the ball $\{x' \in \mathbb{R}^{n-1} : x_1^2 + \cdots + x_{n-1}^2 \leq r^2 - x_n^2\}$. Using the formula for the Fourier transform of the indicator of a ball (see [10, Chapter 4, Theorem 4.15]) we obtain the required result.

Lemma 5. Let $f \in L^p(H)$ for some $p \in [1,2]$ and suppose that $\int_{B_r} f(x+y)dx = 0$ for all $r \in E_{n/2}$ and all $y \in \{x \in \mathbb{R}^n : x_n > r\}$. Then there exists $u \in C^{\infty}(H)$ such that $\Delta u + u = 0$ and f = u in H almost everywhere.

Proof. Let φ be an arbitrary function in the class $C^{\infty}(\mathbb{R}^n)$ with support inside the ball B_1 . We set

$$F(x) = \int_{H} f(y)\varphi(x+y) \, dy, \quad x \in H_1 = \{x \in \mathbb{R}^1, \ x_n > 1\}.$$
 (10)

Let $r \in E_{\frac{n}{2}}$. In view of (10), one has

$$\int_{B_r(0)} F(x_1 + t_1, \dots, x_{n-1} + t_{n-1}, x_n + y) \, dx = 0 \tag{11}$$

for all $t \in (t_1, \ldots, t_{n-1}) \in \mathbb{R}^{n-1}$ and y > r+1. Assume that $\mu \ge 0$ and $\lambda \in \mathbb{R}^{n-1}$ are related by $\mu = |\lambda|$. For brevity we shall write $g_{\lambda}(x_n)$ for the Fourier transform of $F(x', x_n)$ with respect to x'. Using Lemma 4 we see from (11) that

$$\int_{-\nu_k}^{\nu_k} g_{\lambda}(x_n + y)\varphi_{k,\mu}(x_n) \, dx_n = 0,$$
(12)

for all $k \in \mathbb{N}$, $y > \nu_k + 1$ and almost all $\lambda \in \mathbb{R}^{n-1}$. Now define $g_{\lambda,k}(u) = g_{\lambda}(u + \nu_k + 2)$, $u > \nu_k - 1$. Thus $g_{\lambda,k} \in C^{\infty}(-\nu_k - 1, +\infty)$ and

$$\int_{-\nu_k}^{\nu_k} g_{\lambda,k}(\xi + \eta) \varphi_{k,\mu}(\xi) \, d\xi = 0, \quad \eta > -1,$$
(13)

for each $k \in \mathbb{N}$ (see (10)).

Assume that $\eta > -1$, $z \in \mathbb{C}$, and let

$$W_{k,\mu}(\eta, z) = \int_{-\nu_k}^{\nu_k} g_{\lambda,k}(\eta + \xi) \int_{-\nu_k}^{\xi} \varphi_{k,\mu}(t) e^{iz(\xi - t)} dt d\xi.$$
(14)

Then one has

$$\frac{\partial W_{k,\mu}}{\partial \eta} = \int_{-\nu_k}^{\nu_k} g'_{\lambda,k}(\eta+\xi) \int_{-\nu_k}^{\xi} \varphi_{k,\mu}(t) e^{iz(\xi-t)} dt d\xi.$$

Integrating by parts we find that

$$\frac{\partial W_{k,\mu}}{\partial \eta} = \widehat{\varphi}_{k,\mu}(z)e^{i\nu_k z}g_{\lambda,k}(\eta+\nu_k) - \int_{-\nu_k}^{\nu_k} g_{\lambda,k}(\eta+\xi)\varphi_{k,\mu}(\xi)\,d\xi - iz\int_{-\nu_k}^{\nu_k} g_{\lambda,k}(\eta+\xi)\int_{-\nu_k}^{\xi} \varphi_{k,\mu}(t)e^{iz(\xi-t)}\,dt\,d\xi.$$

This together with (13) yields

$$\frac{\partial W_{k,\mu}}{\partial \eta} = -izW_{k,\mu} + \widehat{\varphi}_{k,\mu}(z)e^{i\nu_k z}g_{\lambda,k}(\eta + \nu_k).$$
(15)

Let $N_{k,\mu} = \{z \in \mathbb{C} : \widehat{\varphi}_{k,\mu}(z) = 0\}$ and assume that $\tau \in N_{k,\mu}$. Equality (15) shows that the value $W_{k,\mu}(\eta,\tau)e^{iz\eta}$ is independent of η . Because of (14) this means that

$$\int_{-\nu_k}^{\nu_k} g_{\lambda,k}(\eta+\xi) \int_{-\nu_k}^{\xi} \varphi_{k,\mu}(t) e^{i\tau(\xi-t)} dt d\xi = C_{k,\mu}(\tau) e^{-i\tau\eta}, \quad \eta > -1,$$
(16)

where the constant $C_{k,\mu}(\tau)$ is independent of η . Next, let $s \in \mathbb{N}$ and $h > \nu_s$. It follows from (16) and (13) that

$$C_{k,\mu}(\tau) \int_{-\nu_s+h}^{\nu_s+h} e^{-i\tau\eta} \varphi_{s,\mu}(\eta-h) \, d\eta = 0,$$

whence $C_{k,\mu}(\tau)e^{-i\tau h}\widehat{\varphi}_{s,\mu}(\tau) = 0$. This together with (16) implies that if for some $k \in \mathbb{N}$ and $\tau \in N_{k,\mu}$ there exists $s \in \mathbb{N}$ such that $\widehat{\varphi}_{s,\mu}(\tau)$ is nonzero, then

$$\int_{-\nu_k}^{\nu_k} g_{\lambda,k}(\eta+\xi) \int_{-\nu_k}^{\nu_k} \varphi_{k,\mu}(t) e^{i\tau(\xi-t)} dt d\xi = 0, \quad \eta > -1.$$
(17)

Assertion (iii) of Lemma 1 shows that (17) holds for each $\tau \in N_{k,\mu}$ such that $\tau^2 + \mu^2 \neq 1$. If the last condition is valid then one has

$$\int_{-\nu_k}^{\nu_k} \Phi_{\lambda,k}(\eta+\xi) \int_{-\nu_k}^{\xi} \varphi_{k,\mu}(t) e^{i\tau(\xi-t)} dt d\xi = 0, \quad \eta > -1,$$
(18)

where

$$\Phi_{\lambda,k}(t) = g_{\lambda,k}''(t) + (1 - \mu^2)g_{\lambda,k}(t), \quad t > -\nu_k - 1.$$
(19)

For the case where $\tau^2 + \mu^2 = 1$ relation (18) remains valid because of (16). By differentiating (18) with respect to η and by setting $\eta = 0$ we infer that

$$\int_{-\nu_k}^{\nu_k} \Phi_{\lambda,k}^{(m)}(\xi) \int_{-\nu_k}^{\xi} \varphi_{k,\mu}(t) e^{i\tau(\xi-t)} dt d\xi = 0,$$
(20)

for all $\tau \in N_{k,\mu}$ and $m \in \mathbb{Z}_+$. We now put $g(u) = \sum_{j=1}^{2n+3} \alpha_{j,k} \Phi_{\lambda,k}^{(j)}(u)$, where the constants $\alpha_{j,k} \in \mathbb{C}$ are selected so that $\sum_{j=1}^{2n+3} |\alpha_{j,k}| \neq 0$ and the function g satisfies assumptions 1) and 2) of Lemma 2. This is possible since 2n+3 is grater than the total number of equations in assumptions 1) and 2) of Lemma 2. Choosing λ so that $J_{\frac{n}{2}}(|\lambda|\nu_k) \neq 0$ for each $k \in \mathbb{N}$, we conclude from (20) and Lemma 2 that g = 0 on $[-\nu_k, \nu_k]$. Using now (21) and (19), one sees from (17) and Titchmarsh's theorem on convolution (see [9, Appendix VII, Chapter 12]) that g = 0 on $(-\nu_k, +\infty)$. By the definition of g_{λ} and (19) it follows that g_{λ} is a solution of some linear differential equation with nonzero constant coefficients depending on λ . This means that g_{λ} has the form

$$g_{\lambda}(t) = \sum_{m=0}^{M} \sum_{l=1}^{L} a_{\lambda,m,l} t^{m} \exp(ib_{l}t), \quad t > 1,$$

where the constants $a_{\lambda,m,l} \in \mathbb{C}$, $\nu_l \in \mathbb{C}$, $M \in \mathbb{Z}_+$, $L \in \mathbb{N}$ depend, in general, on λ . In the sequel, without loss of generality, we assume that the numbers b_l are pairwise distinct. Bearing (12) in mind one concludes from Lemma 3 that

$$g_{\lambda}(x_n) = C_1(\lambda)e^{-i\sqrt{1-|\lambda|^2}x_n} + C_2(\lambda)e^{i\sqrt{1-|\lambda|^2}x_n},$$
(21)

where $C_1(\lambda)$ and $C_2(\lambda)$ are complex constants depending on λ . Next, let y > r > 0 and $t \in \mathbb{R}^{n-1}$. Applying (21), by Lemmas 4 and 1(i) we obtain

$$\int_{B_r} F(x'+t, x_n+y) dx = (2\pi r)^{(n/2)} J_{n/2}(r) F(t, y).$$

By the theorem on ball means for solutions of Helmholtz's equation (see[5]) this means that $\Delta F + F = 0$ in H_1 . Since the function φ above was arbitrary, one deduces from (10) that $\Delta f + f = 0$ in H in the distribution sense. This equality and the ellipticity of the operator Δ ensure us that f almost everywhere equal to a function $u \in C^{\infty}(H)$ such that $\Delta u + u = 0$. Hence the lemma is proved.

3. Proof of the main result. We now proceed to the proof of Theorem 2.

(i) \rightarrow (ii). It follows from the assumptions and ([3, Part 4, Theorem 1.2]) that there exists $\lambda = \lambda(A) > 0$ such that the equation

$$\Delta u + \lambda^2 u = \chi_A \tag{22}$$

has a solution $u \in C^1(\mathbb{R}^n)$ with compact support (here equality (22) is understood in the sense of distributions). We select a non-trivial function $\phi \in \mathcal{D}(\mathbb{R}^n)$ such that $\operatorname{supp} v \subset H$ where $v = \chi_A * \phi$. Setting $w = u * \phi$ one sees from (22) that

$$\Delta w + \lambda^2 w = v. \tag{23}$$

We claim that each continuous linear functional Ψ on $L^p(H)$ annihilating the indicator functions of all balls in H of radii $r \in N_{\lambda}$ also annihilates v. By Riesz's theorem and Lemma 5 such a functional has the following form

$$\Psi(g) = \int_{H} g(x)f(x)dx, \ g \in L^{p}(H),$$
(24)

where $f \in L^q(H)$, q = p/(p-1), and

$$\Delta f + \lambda^2 f = 0 \quad \text{in } H. \tag{25}$$

The last equality and the ellipticity of the operator Δ mean that f is almost everywhere equal to a real analytic function on H. Using (23), (24), and (25), we have $\Psi(v) = \int_H w(x)$ $(\Delta f + \lambda^2 f)(x)dx = 0$ proving the claiming. Thus the convolution $\chi_A * \phi$ is the limit of a sequence of linear combinations of the indicator functions of balls in H of radii $r \in N_\lambda$ convergent in $L^p(H)$. Now, from the arbitrariness of ϕ and ([10, Chapter 1, Theorem 1.18]) we obtain the required result.

(ii) \rightarrow (i). For $\lambda = \lambda(A)$ we consider a non-trivial non-negative function $\varphi \in \mathcal{D}(\mathbb{R}^1)$ with support on $[a, b] \subset (\lambda/2, +\infty)$. Now define

$$f(x) = \int_{a}^{b} \frac{J_{(n-3)/2}(\sqrt{t^{2} + \lambda^{2}}|x'|)}{(\sqrt{t^{2} + \lambda^{2}}|x'|)^{(n-3)/2}} e^{-tx_{n}}\varphi(t)dt, \ x \in \mathbb{R}^{n}.$$
(26)

Repeating the argument in the proof of Theorem 2 in [7] we see that $f \in (C^{\infty} \cap L^q)(H)$ for each $q \geq 1$. In addition f(x) > 0 for $x = (0, \ldots, 0, x_n)$ and relation (25) is satisfied. Using the mean theorem for Helmholtz's equation we conclude that $\int_B f(x)dx = 0$ for each ball $B \subset H$ with radius $r \in N_{\lambda}$. Hence by the assumption in (ii) and the Hölder inequality one obtains $\int_{A+h} f(x)dx = 0$ for each $h \in H$. Take $h = h_1 + h_2$ where $h_1, h_2 \in H$. It follows from (26) and the arbitrariness of h_2 and φ that

$$\int_{A+h_1} \frac{J_{(n-3)/2}(\sqrt{t^2 + \lambda^2} |x'|)}{(\sqrt{t^2 + \lambda^2} |x'|)^{(n-3)/2}} e^{-tx_n} dx = 0$$
(27)

for each $t > \lambda/2$. For the case where n = 2 this yields $\int_{A+h_1} \cos(\sqrt{t^2 + \lambda^2}x_1)e^{-tx_2}dx_1dx_2 = 0$ (see [8, formula (7.3)]). Since $h_1 \in H$ could be arbitrary the last relation shows that

$$\int_{A} \exp(-tx_2 + i\sqrt{t^2 + \lambda^2}x_1) dx_1 dx_2 = 0.$$
(28)

Assume now that n > 2. It follows from (27) and [3, Part 1, formula (5.29)] that

$$\int_{\mathbb{S}^{n-2}} \int_{A+h_1} \exp\left(-tx_n + i\sqrt{t^2 + \lambda^2} \sum_{j=1}^{n-1} x_j \sigma_j\right) dx d\omega(\sigma) = 0,$$

where $d\omega$ is area measure on \mathbb{S}^{n-2} . As before, this yields

$$\int_{A} \exp\left(-tx_n + i\sqrt{t^2 + \lambda^2} \sum_{j=1}^{n-1} x_j \sigma_j\right) dx = 0$$
(29)

for all $\sigma = (\sigma_1, \ldots, \sigma_{n-1}) \in \mathbb{S}^{n-2}$. Since the left-hand parts in (28) and (29) are holomorphic functions of variable t in the disk $\{t \in \mathbb{C} : |t| < \lambda\}$ one sees from (28) and (29) that $\int_A \exp(i\sum_{j=1}^n \zeta_j x_j) dx = 0$ for all $(\zeta_1, \ldots, \zeta_n) \in \mathbb{R}^n$ such that $|\zeta| = \lambda$. Thus A fails to have the weak Pompeiu property (see, for instance, [5]). Hence A is not a Pompeiu set and the proof of Theorem 2 is complete.

REFERENCES

- Zalcman L. A bibliographic survey of the Pompeiu problem; in: B. Fuglede et al. (eds.)// Approximation by Solutions of Partial Differential Equations. – Dordrecht: Kluwer Academic Publishers, 1992. – P. 185– 194.
- Zalcman L. Supplementary bibliography to 'A bibliographic survey of the Pompeiu problem'; in Radon Transforms and Tomography// Contemp. Math. - 2001. - V.278. - P. 69-74.
- Volchkov V.V. Integral Geometry and Convolution Equations. Dordrecht: Kluwer Academic Publishers, 2003. – 454 p.
- 4. Volchkov V.V., Volchkov Vit.V. Harmonic Analysis of Mean Periodic Functions on Symmetric Spaces and the Heisenberg Group. – London: Springer, 2009. – 671 p.
- Volchkov V.V. New theorems on the mean for solutions of the Helmholtz equation// Russian Acad. Sci. Sb. Math. - 1994. - V.79. - P. 281-286.
- Volchkov V.V. Theorems on ball means values in symmetric spaces// Sbornik: Math. 2001. V.192. P. 1275–1296.
- Ochakovskaya O.A. Precise characterizations of admissible rate of decrease of a non-trivial function with zero ball means// Sbornik: Math. - 2008. - V.199. - P. 45–65.
- 8. Korenev B.G. Introduction to the theory of Bessel functions. Moscow: Nauka, 1971. 288 p.
- 9. Levin B. Ya. Distribution of zeros of entire functions. Providence, RI: Amer. Math. Soc., 1964. 632 p.
- 10. Stein E., Weiss G. Introduction to Fourier Analysis on Euclidean Spaces. New Jersey: Princeton University Press, 1971. 332 p.

Institute of Applied Mathematics and Mechanics NAS of Ukraine, Donetsk ochakovskaja@yandex.ua