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DESCRIPTION OF POMPEIU SETS IN TERMS OF APPROXIMATIONS
OF THEIR INDICATOR FUNCTIONS

O. A. Ochakovskaya. Description of Pompeiu sets in terms of approximations of their indicator
functions, Mat. Stud. 39 (2013), 142-149.

Let H be an open upper half-space in R™, n > 2, and assume that A is a non-empty, open,
bounded subset of R such that A C H and the exterior of A is connected. Let p € [2,+00).
It is proved that there is a nonzero function with zero integrals over all sets in R™ congruent
to A if and only if the indicator function of A is the limit in LP(H) of a sequence of linear
combinations of indicator functions of balls in H with radii proportional to positive zeros of the
Bessel function J,, /5. The proportionality coefficient here is the same for all balls and depends
only on A.

0. A. Ouaxkosckasi. Onucarue muoocecmns Ilomnetivo 6 mepmMuHaxr GNNPOKCUMAUUL UL UHOU-
xamopos // Mar. Cryuii. — 2013. — T.39, Ne2. — C.142-149.

IIycrs H — oTkpbITOE BepxHee mojynpocTpanctso B R™ n > 2 u nycrb A — Hemycroe,
OTKPBITOE, OpaHIYeHHOe MOoaMHOKecTBO R™ Taxoe, uro A C H u Buemmocts A cazua. Ilycrn
p € [2,+00). TlokazaHo, 4TO JJIsT CyNECTBOBAHUSI HEHYJIEBOH (QYHKIMN ¢ HyJE€BBIMU HHTETDA-
JlaMH 110 BceM MHOXKecTBaM u3 R"™, KOHrpySHTHBIM A, HEOOXOIMMO U JOCTATOYHO, YTOOBI WHIU-
kaTop A Obur upeznenom B LP(H) nocjienoBaTeibHOCTU JIMHEHHBIX KOMOUHAIMA MHIMKATOPOB
apoB, jexamux B H, ¢ pajguycamu, TPOMOPIINOHAIBHBIMA TOJIOKATEIHHBIM HYJIAM (DyHKITUN
Beccens J, /5. Ilpu arom KosdduimenT nponopnuoHa bHOCT! OWH W TOT Ke JIjid BCeX IapoB
U 3aBUCHT TOJBKO OT A.

1. Introduction and the central result. Let R" be a real Euclidean space of dimension
n > 2 and let M(n) be the group of its rigid motions.

A non-empty open bounded subset A of R" is called a Pompeiu set if for function f €
Lioe(R™) the equality

/ f(z)dz =0 (1)
gA

holding for all g € M(n) yields f = 0. In this case, one says also that A has the Pompeiu
property.

Next, one says that A fails to have the weak Pompeiu property if there is a nonzero
solution f of equality (1) such that
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for some o > 0 depending on f.

In the sequel we write x4 for the indicator function of A. Also let Ext(A) be the exterior
of A (i.e., Ext(A) = R™\ A where A is the closure of A). For A > 0, let Ny = {r > 0:
Jnj2(rA) = 0} where J, is the kth-order Bessel function of the first kind.

The classical Pompeiu problem about functions satisfying (1) has been studied by many
authors (see survey papers [1], 2|, that contain an extensive bibliography; see also [3], [4])

The following description of sets with the weak Pompeiu property has been obtained by
V. V. Volchkov, see [5].

Theorem 1. Let A be a non-empty open bounded subset of R™. Then the following condi-
tions are equivalent.

(1) A fails to have the weak Pompeiu property.

(i1) There exists A = A\(A) > 0 such that the function x 4 is the limit of a sequence of linear
combinations of the indicator functions of balls of radii r € Ny convergent in L'(R™).

We note that a similar result for the Pompeiu property holds under the assumption that
the set Ext(A) is connected (see [6]).

It is known that Theorem 1 is no longer valid for the space LF(R"™), p > 2n/(n + 1)
instead of L'(R™) (see [3, Part 2, Theorem 1.13]). The case 1 < p < 2n/(n+ 1) is still open.

In this paper, we obtain an analog of Theorem 1 in terms of approximation of y 4 in the
space LP(H) where 2 < p < 400 and H = {x = (z1,...,2,) € R": 2, > 0}. Our main result
is as follows.

Theorem 2. Let A be a non-empty open bounded subset of R" such that A C H and the
set Ext(A) is connected. Let p € [2,+00). Then the following conditions are equivalent.

(1) A does not have the Pompeiu property.

(17) There exists A = A(A) > 0 such that the function x4 is the limit of a sequence of
linear combinations of the indicator functions of balls in H of radii r € N convergent
in LP(H).

Together with [5], the proof of Theorem 2 shows (see Section 3 below) that the same result
for the weak Pompeiu property remains valid. Moreover, in this situation the assumption
that Ext(A) is connected can be removed.

2. Notation and auxiliary statements. Let » > 0 and let B, = {x € R™: |z| < r} where
|-| is the Euclidean norm. Denote by E,, o = {v1,15, ...} the increasing sequence of all zeros
of the function J,, lying on (0, +00).

As usual, fis the Fourier transform of the function f and f; * f5 is the convolution of the
functions fi, fo (when they are well defined), suppf is the support of f, and D(R") is the
set of functions in the class C*°(R"™) with compact support. Let A be the Laplace operator.

For x = (z1,...,2,) € R" we set o/ = (21,...,2,01) € R"|2/| = /o +---+22_ .
Also let (-,-) be the inner product in R"™! and assume that dz’ = dz;---dx,_; is the
Lebesgue measure in R* 1.

For ;1 > 0 we set

(1 = )T a0/ = B, Jt] <1

0, t| > r.

o(t) = o(t,r,p) = {

Also let ¢y ,(t) = o(t, vk, 1), k € N.
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Lemma 1. The following assertions are true.

(i) For z € C,

~ n=1 _n

Plz) = V2" Pt T (/i + 22) (1 + 2%)7H (3)
(i) All the zeros of ¢y, in C\ {0} are simple.
(¢ii) If ¢ € C and p > 0 are fixed and Py ,(¢) =0 for all k € N then (* + p? = 1.
Proof. Assertions (i) and (ii) were obtained by the author in [7]. Let us prove (iii). First we
recall the fact that all the zeros of .J,,/, are real (see [8, Chapter 23]). Using now (3) we see
that for each k € N there exists m = my, € N such that ¢? = v2 /v? — p?. This means that

the value v, /vy is independent of k. Taking |5, Lemma 3| into account we conclude that
Um/Vk = 1, which yields the required result. O

Lemma 2. Let k € N and 1 > 0 be fixed and assume that Jx(uvy) # 0. Also let g be
a function in the class C"[—vy, vy| satisfying the following conditions:

1) g (vp) =0 for all s € {0,...,n};

2) [ ¥ (a)prula)da =0 for all s € {0,...,n};

Vi

3) 7 9(¢) fik ()™ dt d¢ = 0 for all T € C such that 3y, ,.(7) = 0.
Then g = 0.

Proof. We can rewrite condition 3) as follows

/ / glar+ B)pen(8) dB da = 0. (4)

Consider the entire function
2uy, ) v —o
Z) _ e—l/kz/ ezza/ g(a + B)gpk#(ﬁ) dBda, =z € C. (5)
0 —Ug

Integrating (5) by parts and using conditions 1) and 2) we obtain |w(z)| < C;(1+]z|)e#l€l,
with positive constant € independent of z. It now follows from (4), (5) and Lemma 1(ii)

that the function

wi(2) = w(2)/ Pk u(2) (6)
is entire. Using the asymptotic formula for Jx(2) as 2 — oo (see [8, Chapter 29]) we deduce
from (6) and (3) the inequality |wi(t & it)] < Cy(1 + [t]) =", ¢t € R!, with positive C;
independent of ¢. Hence it follows from the Phragmén-Lindelof principle and Liouwille’s
theorem that w; = 0. According to (5) this means that ffﬁ;ag(a + B)pru(B)dBdo = 0
for all a € (0,214). Then we have the result of our lemma from Titchmarsh’s theorem on
convolution (see [9, Appendix VII, Chapter 12]). ]

Lemma 3. Let R >r >0, T € L(R'), assume that suppT C [—r,r] and let

M

f(t Zam lt eXp(Zblt) te (_R7 R)7

m=0 [=1

where M € Z,, L € N, a,,; € C, and b € C are pairwise different complex numbers.

Assume also that f*T = 0 and T\(”)(bk) # 0 for somen € {0,...,M}, ke {l,...,L}. Then
am e = 0 for all m > n.
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Proof. Simple calculations show that the condition f x T = 0 is equivalent to

v

M
Z Ay (—1)™ <m) Trm=(b) =0, ve{o,...,M}, le{l,... L},

where (’Z‘) are the binomial coefficients. The required result is now obvious. O

Lemma 4. Let M, = {z = (2/,x,) € R": |z,| < r}, assume that u € LP(M,) for some
p € [1,2], and let

o(t) = / (@ +t2,)dz, t € R (7)

r

Then v € LP(R™ ') and

() = (%”') e / "GO0 2) 0 (@, N ) (8)

'

for almost all A\ € R"™!, where u is the Fourier transform of u(z’, z,,) with respect to x'.

Proof. Since u € LP(M,) we see from (7) and Holder’s inequality that v € LP(R™"™!). Let us
prove (8). We claim that

(N = / e NN, 2, ) da. (9)

It is enough to consider the cases p = 1 and p = 2 (see [10, Chapter 1, Section 2|). In
the case p = 1 relation (9) follows from the definition of the Fourier transform and Fubini’s
theorem. Suppose now that p = 2. For R > 0 we set

vgr(t) = / up(r’ +t,2,)dr, t € R"1

T

where ug(2', x,) = u(z’, x,) for |2'| < R, and ug(2’,z,) = 0 otherwise. Letting R — +o0
one sees that ur — w in L?*(M,) and hence vp — v in L*(R"!). In addition,

TN = [ PG )
B,

for almost all A € R"~!. Passing here to the limit as R — oo in the space D'(R"!) of the
distributions on R"™! we arrive at (9). Next, passing to repeated integration in (9) one infers

that
(n=1)/2  pr
2 N
5(\) = (’—;’) / G\, ) / ¢ da! da,,

where the inner integral is taken over the ball {2/ € R*™': 22 +... 422 | <r? —22}. Using
the formula for the Fourier transform of the indicator of a ball (see [10, Chapter 4, Theorem
4.15]) we obtain the required result. O

Lemma 5. Let f € LP(H) for some p € [1,2] and suppose that [, f(z +y)dx = 0 for all
r € B,y andally € {x € R": x,, > r}. Then there exists u € C*(H) such that Au+u =0
and f =w in H almost everywhere.
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Proof. Let ¢ be an arbitrary function in the class C°°(R™) with support inside the ball B;.
We set

Flz) = /Hf(y)go(x by dy, zeH ={zeR, 2 > 1} (10)

Let 7 € En. In view of (10), one has
/ F(lzy+t,...,2p 1 +ty1,2, +y)dx =0 (11)
B,(0)

for all t € (t1,...,t,—1) € R" 1 and y > r + 1. Assume that g > 0 and A € R*! are related
by pu = |A|. For brevity we shall write g)(x,) for the Fourier transform of F(a2’,z,) with
respect to z’. Using Lemma 4 we see from (11) that

Vi
/’%mﬁwww%m%za (12)

Vi

for all K € N, y > 1; + 1 and almost all A € R"~!. Now define gy (u) = gr(u+vx +2), u >
v — 1. Thus gy, € C°(—1; — 1, 400) and

/k Irk(§+meru(§)ds =0, n>-—1, (13)

Vi

for each k € N (see (10)).
Assume that n > —1, z € C, and let

3 .
gax(n + &) / (D)€ di d. (14)

—vg

Vi

Wesn,2) = |

—vg

Then one has

oW, 2 ; o
= [ a9 [ o aras
n —vg —Vg

Integrating by parts we find that

Wi e .
a;;’“ = Ou(2)e" grp(n +vi) — / 9N+ &)pru(§) d—
0

Vk 3 ,
—iz/ gm(n+§)/ i (t)e*E0 at de.

Vi —V

This together with (13) yields

Wi
on

= —izWy, + @k,#(z)ewkng,k(T] + v). (15)

Let Ny, = {z € C: §pu(2) = 0} and assume that 7 € Ny ,. Equality (15) shows that the
value Wy, ,(n, 7)e”*" is independent of 7. Because of (14) this means that

Vi 13 i .
t/gmm+®/<%ﬂwﬂﬂﬁ%=0mmfm,n>4q (16)

Vk —Vk
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where the constant Cj, ,(7) is independent of 7. Next, let s € N and h > v,. It follows from
(16) and (13) that

vs+h
Cru(T) / e "M, u(n — h)dn =0,

vs+h

whence Cy ,(T)e™ ™, ,(7) = 0. This together with (16) implies that if for some k € N and
T € Ny, there exists s € N such that @, ,(7) is nonzero, then

7 Vi '
/ ai(n+ f)/ kaﬁ(t)e”(ﬁ—t) dtdé =0, n>—1. (17)

Vi —Vi

Assertion (iii) of Lemma 1 shows that (17) holds for each 7 € Ny, such that 7% 4 p? # 1. If
the last condition is valid then one has

Vi 3 .
| s+ o) [ enamereiaag =0, > -1 (18)
- -
where
Dy (t) = gh,(t) + (1 = ) gag(t), t>—vp — 1. (19)

For the case where 72+ p? = 1 relation (18) remains valid because of (16). By differentiating
(18) with respect to n and by setting n = 0 we infer that

vk I3
/ 5 (€) / O (D)™ ED dt de = 0, (20)

Vi —Vi

for all 7 € N, and m € Z,. We now put g(u) = Z?nf} o, k(ID(A]L( ), where the constants

a;r € C are selected so that 22"+3| aj| # 0 and the function g satisfies assumptions 1)
and 2) of Lemma 2. This is pos&ble since 2n+ 3 is grater than the total number of equations
in assumptions 1) and 2) of Lemma 2. Choosing A so that Jx ([A[vg) # 0 for each k € N,
we conclude from (20) and Lemma 2 that g = 0 on [—uvy, vx]. Using now (21) and (19), one
sees from (17) and Titchmarsh’s theorem on convolution (see |9, Appendix VII, Chapter 12|)
that ¢ = 0 on (—vg, +00). By the definition of g, and (19) it follows that g, is a solution
of some linear differential equation with nonzero constant coefficients depending on A. This
means that g, has the form

M L
ZZ@,\mlt exp(ibt), t>1,

m=0 [=1

where the constants ax.,,; € C, vy € C, M € Z,, L € N depend, in general, on \. In
the sequel, without loss of generality, we assume that the numbers b, are pairwise distinct.
Bearing (12) in mind one concludes from Lemma 3 that

ga(2y) = C1(N)e "V IZRAPEn L 0y () etV IZIAPon (21)

where Cj(\) and Cy(\) are complex constants depending on A. Next, let y > r > 0 and
t € R". Applying (21), by Lemmas 4 and 1(i) we obtain

/ F(a 4+ 1,20 + y)dz = (270) ™ T, n(r)F (1, y).

r
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By the theorem on ball means for solutions of Helmholtz’s equation (see[5]) this means that
AF + F = 0 in H,. Since the function ¢ above was arbitrary, one deduces from (10) that
Af+ f =0in H in the distribution sense. This equality and the ellipticity of the operator A
ensure us that f almost everywhere equal to a function v € C*°(H) such that Au + u = 0.
Hence the lemma is proved. n

3. Proof of the main result. We now proceed to the proof of Theorem 2.
(i)— (ii). It follows from the assumptions and ([3, Part 4, Theorem 1.2|) that there exists
A = A(A) > 0 such that the equation

Au+ Nu = x4 (22)

has a solution v € C'(R"™) with compact support (here equality (22) is understood in the
sense of distributions). We select a non-trivial function ¢ € D(R"™) such that suppv C H
where v = x4 * ¢. Setting w = u x ¢ one sees from (22) that

Aw + Nw = v. (23)

We claim that each continuous linear functional ¥ on LP(H) annihilating the indicator
functions of all balls in H of radii » € N, also annihilates v. By Riesz’s theorem and
Lemma 5 such a functional has the following form

W(g) = /H 9(@) f(2)dz, g € LP(H), (24)
where f € LY(H), ¢ =p/(p— 1), and
Af+Xf=0 in H. (25)

The last equality and the ellipticity of the operator A mean that f is almost everywhere
equal to a real analytic function on H. Using (23), (24), and (25), we have ¥(v) = [, w(x)
(Af + N2f)(z)dxr = 0 proving the claiming. Thus the convolution y * ¢ is the limit of
a sequence of linear combinations of the indicator functions of balls in H of radii » € N,
convergent in LP(H). Now, from the arbitrariness of ¢ and ([10, Chapter 1, Theorem 1.18|)
we obtain the required result.

(ii)— (i). For A = A(A) we consider a non-trivial non-negative function ¢ € D(R') with
support on [a,b] C (A/2,4+00). Now define

o= [ denpl /PR

o (V24 N2|z|)(n=3)/2

Repeating the argument in the proof of Theorem 2 in [7] we see that f € (C> N L9)(H) for

each ¢ > 1. In addition f(z) > 0 for x = (0,...,0,z,) and relation (25) is satisfied. Using

the mean theorem for Helmholtz’s equation we conclude that [, f(z)dz = 0 for each ball

B C H with radius r € N,. Hence by the assumption in (ii) and the Hélder inequality one

obtains fA+h f(x)dx = 0 for each h € H. Take h = hy + hy where hy,hy € H. It follows
from (26) and the arbitrariness of hy and ¢ that

/ Jn—3)2(VI* + X?[2])
A+hy (\/m|$’|)(”_3)/2

e rp(t)dt, € R™ (26)

e rdy =0 (27)
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for each ¢ > \/2. For the case where n = 2 this yields [, cos(vV? + A2a1)e "*2dx1dwy = 0
(see [8, formula (7.3)]). Since h; € H could be arbitrary the last relation shows that

/ exp(—txy + V12 + N2x1)drdzy = 0. (28)
A

Assume now that n > 2. It follows from (27) and [3, Part 1, formula (5.29)] that

n—1
/ / exp | —tz, +iVt? + A2 Z zjo; | drdw(o) =0,
Sn_Q AJrhl ]:1

where dw is area measure on S"2. As before, this yields

n—1
/ exp | —twz, +iVt: 4+ \? Z zjo; | dr =0 (29)
A o

for all 0 = (01,...,0,_1) € S" 2. Since the left-hand parts in (28) and (29) are holomorphic
functions of variable ¢ in the disk {t € C: |[t| < A} one sees from (28) and (29) that
Jaexp(id "5, Grj)de = 0 for all (¢i,...,¢,) € R™ such that [(| = A. Thus A fails to
have the weak Pompeiu property (see, for instance, [5]). Hence A is not a Pompeiu set and
the proof of Theorem 2 is complete.
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